Sciact
  • EN
  • RU

On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium Full article

Journal International Journal of Non-Linear Mechanics
ISSN: 0020-7462
Output data Year: 2018, Volume: 105, Pages: 152–157 Pages count : 6 DOI: 10.1016/j.ijnonlinmec.2018.06.002
Tags Invariant solution; Johnson–Segalman convected derivative; Lagrangian coordinates; Lie group; Stagnation point flow; UCM; Viscoelastic fluid
Authors S.V. Meleshko S.V. 1 , N.P. Moshkin N.P. 2,3 , V.V. Pukhnachev V.V. 2,3
Affiliations
1 Suranaree University of Technology, Nakhon Ratchasima, Thailand
2 Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the RAS
3 Novosibirsk State University

Abstract: Unsteady two-dimensional flows of incompressible viscoelastic Maxwell medium with upper, low and corotational convective derivatives in the rheological constitutive law are considered. A class of partially invariant solutions is analyzed. Using transition to Lagrangian coordinates, an exact solution of the problem of unsteady flow near free-stagnation point was constructed. For the model with Johnson–Segalman convected derivative and special linear dependence of the vertical component of velocity, the general solutions were derived.
Cite: S.V. Meleshko S.V. , N.P. Moshkin N.P. , V.V. Pukhnachev V.V.
On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium
International Journal of Non-Linear Mechanics. 2018. V.105. P.152–157. DOI: 10.1016/j.ijnonlinmec.2018.06.002 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000445718100014
Scopus: 2-s2.0-85049022317
Elibrary: 35756182
OpenAlex: W2807387578
Citing:
DB Citing
Scopus 8
OpenAlex 10
Web of science 7
Altmetrics: