The Trace Theorem for Anisotropic Sobolev — Slobodetskii Spaces with Applications to Nonhomogeneous Elliptic BVPs Full article
Journal |
Известия Алтайского государственного университета. Физико-математические науки
|
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2018, Number: 4(102), Pages: 102-107 Pages count : 6 DOI: 10.14258/izvasu(2018)4-19 | ||||||||
Tags | anisotropic fractional Sobolev spaces, boundary trace of function, p-Laplace operator | ||||||||
Authors |
|
||||||||
Affiliations |
|
Abstract:
Anisotropic Sobolev — Slobodetskii spaces in poly-cylindrical domains of any dimension N are considered. In the first part of the article we revisit the well-known Lions — Magenes Trace Theorem (1961) and naturally extend regularity results for the trace and lift operators onto anisotropic case. As a byproduct, we build some generalization of the Kruzhkov — Korolev Trace Theorem for the first-order Sobolev Spaces (1985). In the second part of the article we observe the nonhomogeneous Dirichlet, Neumann, and Robin problems for p-elliptic equations. The well-posedness theory for these problems can be successfully constructed using isotropic theory, and the corresponding results are outlined in the article. Clearly, in such a unilateral approach the anisotropic features are ignored and the results are far beyond the critical regularity. In the article, the refinement is fulfilled with the help of the constructed extension. Namely, we formulate proper weakly regular anisotropic classes for boundary conditions, such that the boundary value problems appear to be well-posed. In the end of the article, the analogous results are formulated for the p-parabolic problems.
Cite:
Sazhenkov S.A.
, Sazhenkova E.V.
The Trace Theorem for Anisotropic Sobolev — Slobodetskii Spaces with Applications to Nonhomogeneous Elliptic BVPs
Известия Алтайского государственного университета. Физико-математические науки. 2018. N4(102). P.102-107. DOI: 10.14258/izvasu(2018)4-19 РИНЦ OpenAlex
The Trace Theorem for Anisotropic Sobolev — Slobodetskii Spaces with Applications to Nonhomogeneous Elliptic BVPs
Известия Алтайского государственного университета. Физико-математические науки. 2018. N4(102). P.102-107. DOI: 10.14258/izvasu(2018)4-19 РИНЦ OpenAlex
Dates:
Published print: | Sep 11, 2018 |
Identifiers:
Elibrary: | 35647394 |
OpenAlex: | W2899772816 |
Citing:
Пока нет цитирований