Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint Научная публикация
Журнал |
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 16, Страницы: 236-248 Страниц : 13 DOI: 10.33048/semi.2019.16.015 | ||||||
Ключевые слова | penalty method, p-Laplace operator, diffusion-absorption equation, one-sided constraint | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
We consider the homogeneous Dirichlet problem for the nonlinear diffusion-absorption equation with a one-sided constraint imposed on diffusion flux values. The family of approximate solutions constructed by means of Alexander Kaplan's integral penalty operator is studied. It is shown that this family converges weakly in the first-order Sobolev space to the solution of the original problem, as the small regularization parameter tends to zero. Thereafter, a property of uniform approximation of solutions is established in Holder's spaces via systematic study of structure of the penalty operator.
Библиографическая ссылка:
Sazhenkova T.V.
, Sazhenkov S.A.
Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2019. V.16. P.236-248. DOI: 10.33048/semi.2019.16.015 WOS Scopus РИНЦ OpenAlex
Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2019. V.16. P.236-248. DOI: 10.33048/semi.2019.16.015 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 17 янв. 2019 г. |
Опубликована online: | 21 февр. 2019 г. |
Идентификаторы БД:
Web of science: | WOS:000462268100015 |
Scopus: | 2-s2.0-85071177147 |
РИНЦ: | 42735060 |
OpenAlex: | W3015810356 |
Цитирование в БД:
БД | Цитирований |
---|---|
Scopus | 1 |