Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations Full article
Journal |
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2018, Volume: 15, Pages: 1158–1173 Pages count : 16 DOI: 10.17377/semi.2018.15.094 | ||||
Tags | Entropy solution; Forward-backward ultra-parabolic equation; Kinetic solution | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710-731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.
Cite:
Kuznetsov I.V.
, Sazhenkov S.A.
Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2018. V.15. P.1158–1173. DOI: 10.17377/semi.2018.15.094 WOS Scopus РИНЦ
Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2018. V.15. P.1158–1173. DOI: 10.17377/semi.2018.15.094 WOS Scopus РИНЦ
Dates:
Submitted: | Jun 26, 2018 |
Published online: | Oct 15, 2018 |
Identifiers:
Web of science: | WOS:000454860200036 |
Scopus: | 2-s2.0-85074955522 |
Elibrary: | 36998673 |