Sciact
  • EN
  • RU

On a class of nonlocal evolution equations with the p[∇u]-Laplace operator Full article

Journal Journal of Mathematical Analysis and Applications
ISSN: 0022-247X
Output data Year: 2021, Volume: 501, Number: 2, Pages: 125221 Pages count : 1 DOI: 10.1016/j.jmaa.2021.125221
Tags Nonlocal evolution equations; Singular parabolic equation; Variable nonlinearity
Authors Antontsev Stanislav 1,3 , Kuznetsov Ivan 2,3 , Shmarev Sergey 4
Affiliations
1 CMAF-CIO, University of Lisbon
2 Novosibirsk State University
3 Lavrentyev Institute of Hydrodynamics of SB RAS
4 Mathematics Department, University of Oviedo

Abstract: We study the homogeneous Dirichlet problem for the class of singular parabolic equations ut−div(|∇u|p[∇u]−2∇u)=fin Ω×(0,T), where Ω⊂Rd, d≥2, is a smooth domain. The exponent p nonlocally depends on the gradient of the solution: p is a given function defined by p[∇u]≡p(l(|∇u|)),l(|s|)=∫Ω|s|αdx with a constant α∈(1,2]. We find sufficient conditions on the data that guarantee global in time existence and uniqueness of a strong solution of the problem. It is shown that the problem has a solution if either u0 and f, or p′(s) are sufficiently small.
Cite: Antontsev S. , Kuznetsov I. , Shmarev S.
On a class of nonlocal evolution equations with the p[∇u]-Laplace operator
Journal of Mathematical Analysis and Applications. 2021. V.501. N2. P.125221. DOI: 10.1016/j.jmaa.2021.125221 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000653644000019
Scopus: 2-s2.0-85103697728
Elibrary: 46779418
OpenAlex: W3142450580
Citing:
DB Citing
Scopus 4
OpenAlex 4
Elibrary 4
Web of science 4
Altmetrics: