Sciact
  • EN
  • RU

ASYMPTOTIC MODELLING OF INTERFACES IN KIRCHHOFF-LOVE'S PLATES THEORY Научная публикация

Конференция Nonlinear Analysis and Extremal Problems (NLA-2022)
15-22 июл. 2022 ,
Сборник PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON NONLINEAR ANALYSIS AND EXTREMAL PROBLEMS (NLA-2022). Conference Proceedings
Сборник, ISDCT SB RAS. Irkutsk.2022. 174 c. ISBN 978-5-6041814-2-3.
Вых. Данные Год: 2022, Страницы: 100-101 Страниц : 2
Авторы Рудой Евгений Михайлович 1,2
Организации
1 Sobolev Institute of Mathematics of SB RAS, Novosibirsk, Russia
2 Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia

Реферат: Within the framework of the Kirchhoff-Love theory, a thin homogeneouslayer (called adhesive) of small width between two plates (called adherents) isconsidered. It is assumed that elastic properties of the adhesive layer depend on its width which is a small parameter of the problem. Our goal is to perform anasymptotic analysis as the parameter goes to zero. It is shown that depending on the softness or stiffness of the adhesive, there are seven distinct types ofinterface conditions. In all cases, we establish weak convergence of the solutionsof the initial problem to the solutions of limiting ones in appropriate Sobolev spaces. The asymptotic analysis is based on variational properties of solutions ofcorresponding equilibrium problems.
Библиографическая ссылка: Rudoy E.M.
ASYMPTOTIC MODELLING OF INTERFACES IN KIRCHHOFF-LOVE'S PLATES THEORY
В сборнике PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON NONLINEAR ANALYSIS AND EXTREMAL PROBLEMS (NLA-2022). Conference Proceedings. – ISDCT SB RAS., 2022. – C.100-101. – ISBN 978-5-6041814-2-3. РИНЦ
Идентификаторы БД:
РИНЦ: 50045184
Цитирование в БД:
БД Цитирований
РИНЦ Нет цитирований