Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control Научная публикация
Журнал |
Computers and Mathematics with Applications
ISSN: 0898-1221 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 77, Номер: 1, Страницы: 253-262 Страниц : 10 DOI: 10.1016/j.camwa.2018.09.030 | ||||||
Ключевые слова | Semirigid inclusion, Non-penetration, CrackVariational inequality, Junction conditions, Optimal control problem | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
The paper concerns an analysis of an equilibrium problem for 2D elastic body with two semirigid inclusions. It is assumed that inclusions have a joint point, and we investigate a junction problem for these inclusions. The existence of solutions is proved, and different equivalent formulations of the problem are proposed. We investigate a convergence to infinity of a rigidity parameter of the semirigid inclusion. It is proved that in the limit, we obtain an equilibrium problem for the elastic body with a rigid inclusion and a semirigid one. A parameter identification problem is investigated. In particular, the existence of a solution to a suitable optimal control problem is proved.
Библиографическая ссылка:
Khludnev A.M.
, Popova T.
Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control
Computers and Mathematics with Applications. 2019. V.77. N1. P.253-262. DOI: 10.1016/j.camwa.2018.09.030 WOS Scopus РИНЦ OpenAlex
Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control
Computers and Mathematics with Applications. 2019. V.77. N1. P.253-262. DOI: 10.1016/j.camwa.2018.09.030 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована online: | 8 окт. 2018 г. |
Опубликована в печати: | 1 янв. 2019 г. |
Идентификаторы БД:
Web of science: | WOS:000456762400018 |
Scopus: | 2-s2.0-85054428870 |
РИНЦ: | 38613765 |
OpenAlex: | W2896483177 |