Sciact
  • EN
  • RU

On modeling thin inclusions in elastic bodies with a damage parameter Научная публикация

Журнал Mathematics and Mechanics of Solids
ISSN: 1081-2865
Вых. Данные Год: 2018, Том: 24, Номер: 9, Страницы: 2742-2753 Страниц : 12 DOI: 10.1177/1081286518796472
Ключевые слова crack; damage parameter; delamination; derivative of energy functional; non-penetration boundary condition; optimal control problem; Thin inclusion; variational inequality
Авторы KHLUDNEV A.M. 1,2
Организации
1 Lavrentyev Institute of Hydrodynamics, Russian Academy of Sciences
2 Novosibirsk State University

Реферат: In this paper, we analyze equilibrium problems for 2D elastic bodies with two thin inclusions in the presence of damage. A delamination of the inclusions from the matrix is assumed, thus forming a crack between the elastic body and the inclusions. Nonlinear boundary conditions at the crack faces are considered to prevent a mutual penetration between the faces. Weak and strong formulations of the problems are discussed. The paper provides an asymptotic analysis with respect to the damage parameter. An optimal control problem is analyzed with a cost functional to be equal to the derivative of the energy functional with respect to the crack length, and the damage parameter being a control function.
Библиографическая ссылка: KHLUDNEV A.M.
On modeling thin inclusions in elastic bodies with a damage parameter
Mathematics and Mechanics of Solids. 2018. V.24. N9. P.2742-2753. DOI: 10.1177/1081286518796472 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована online: 24 авг. 2018 г.
Идентификаторы БД:
Web of science: WOS:000482482400005
Scopus: 2-s2.0-85052604012
РИНЦ: 35739316
OpenAlex: W2888537940
Цитирование в БД:
БД Цитирований
Scopus 13
OpenAlex 12
Web of science 8
Альметрики: