Sciact
  • EN
  • RU

Space-time FEM solution of dynamic contact problem with discontinuous velocity for multiple impact of deformed bar using PDAS method Full article

Journal Mathematical Methods in the Applied Sciences
ISSN: 0170-4214
Output data Year: 2025, Article number : 0:1, Pages count : 16 DOI: 10.1002/mma.70370
Authors Kovtunenko Victor A. 1,2 , Petrov Adrien 3 , Renard Yves 3
Affiliations
1 Lavrentyev Institute of Hydrodynamics
2 University of Graz
3 INSA Lyon

Funding (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Abstract: A class of one-dimensional impact and dynamic contact problems taking into account non-smooth velocities is studied. The new space-time finite element approximation of dynamic variational inequalities is suggested. The non-smooth solution for the impact of an obstacle by an elastic bar and its energy conservation under persistency conditions is proved on partitions of the space-time domain. The explicit solution of the double impact problem is taken as an analytical benchmark for numerical experiments. For an iterative solution, a primal-dual active set (PDAS) algorithm stemming from semi-smooth Newton methods is constructed. Numerical experiments compare the space-time PDAS method with some other existing methods: a mass redistribution method, Paoli–Schatzman scheme, and a Nitsche-based approximation, highlighting its advantages.
Cite: Kovtunenko V.A. , Petrov A. , Renard Y.
Space-time FEM solution of dynamic contact problem with discontinuous velocity for multiple impact of deformed bar using PDAS method
Mathematical Methods in the Applied Sciences. 2025. 0:1 :1-16. DOI: 10.1002/mma.70370 WOS Scopus
Dates:
Submitted: Aug 21, 2025
Accepted: Nov 19, 2025
Published print: Dec 7, 2025
Identifiers:
Web of science: WOS:001631753800001
Scopus: 2-s2.0-105024087852
Citing:
DB Citing
Scopus 1
Altmetrics: