Sciact
  • EN
  • RU

Poroelastic medium with non-penetrating crack driven by hydraulic fracture: FEM approximation using HHT-alpha and semi-smooth Newton methods Научная публикация

Журнал Algorithms
ISSN: 1999-4893
Вых. Данные Год: 2025, Том: 18, Номер: 9, Номер статьи : 579, Страниц : 14 DOI: 10.3390/a18090579
Ключевые слова hydrofracking; Biot poroelasticity model; dynamic variational inequality; crack non-penetration; primal–dual active set
Авторы Kovtunenko Victor A. 1 , Atlasiuk Olena M. 2,3
Организации
1 University of Graz
2 Institute of Mathematics of the Czech Academy of Sciences
3 University of Helsinki

Реферат: A new class of poroelastic dynamic contact problems stemming from hydraulic fracture theory is introduced and studied. The two-phase medium consists of a solid phase and pores which are saturated with a Newtonian fluid. The porous body contains a fluiddriven crack endowed with non-penetration conditions for the opposite crack surfaces. The poroelastic model is described by a coupled system of hyperbolic–parabolic partial differential equations under the unilateral constraint imposed on displacement. After full discretization using finite-element and Hilber–Hughes–Taylor methods, the well-posedness of the resulting variational inequality is established. Formulation of the complementarity conditions with the help of a minimum-based merit function is used for the semi-smooth. Newton method of solution presented in the form of a primal–dual active set algorithm which is tested numerically.
Библиографическая ссылка: Kovtunenko V.A. , Atlasiuk O.M.
Poroelastic medium with non-penetrating crack driven by hydraulic fracture: FEM approximation using HHT-alpha and semi-smooth Newton methods
Algorithms. 2025. V.18. N9. 579 :1-14. DOI: 10.3390/a18090579
Даты:
Поступила в редакцию: 9 авг. 2025 г.
Принята к публикации: 11 сент. 2025 г.
Опубликована в печати: 13 сент. 2025 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований
Альметрики: