On numerical solving a rigid inclusions problem in 2D elasticity Научная публикация
Журнал |
Zeitschrift fur Angewandte Mathematik und Physik
ISSN: 0044-2275 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2017, Том: 68, Номер: 1, Номер статьи : 19, Страниц : DOI: 10.1007/s00033-016-0764-6 | ||||
Ключевые слова | Bulk rigid inclusion; FEM; Numerical algorithm; Thin rigid inclusion; Variational approach | ||||
Авторы |
|
||||
Организации |
|
Реферат:
A 2D elastic problem for a body containing a set of bulk and thin rigid inclusions of arbitrary shapes is considered. It is assumed that rigid inclusions are bonded into elastic matrix. To state the equilibrium problem, a variational approach is used. The problem is formulated as a problem of minimization of the energy functional over the set of admissible displacements. Moreover, it is equivalent to a variational equality which holds for test functions belonging to the subspace of functions with the prescribed rigid displacement structure on the inclusions. We propose a novel algorithm of solving the equilibrium problem. The algorithm is based on reducing the original problem to a system of the Dirichlet and Neumann problems. A numerical examination is carried out to demonstrate the efficiency of the proposed technique. © 2017, Springer International Publishing.
Библиографическая ссылка:
Rudoy E.
On numerical solving a rigid inclusions problem in 2D elasticity
Zeitschrift fur Angewandte Mathematik und Physik. 2017. V.68. N1. 19 . DOI: 10.1007/s00033-016-0764-6 WOS Scopus РИНЦ OpenAlex
On numerical solving a rigid inclusions problem in 2D elasticity
Zeitschrift fur Angewandte Mathematik und Physik. 2017. V.68. N1. 19 . DOI: 10.1007/s00033-016-0764-6 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000395104800019 |
Scopus: | 2-s2.0-85008616084 |
РИНЦ: | 29468729 |
OpenAlex: | W2570614340 |