Sciact
  • EN
  • RU

On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium Научная публикация

Сборник Mathematical Models and Integration Methods
Монография, De Gruyter Proceedings in Mathematics. © 2024 Walter de Gruyter GmbH, Berlin/Boston.2024.
Вых. Данные Год: 2024, Страницы: 111-123 Страниц : 13 DOI: 10.1515/9783111546667
Авторы Meleshko S.V. 1 , Moshkin N.H. 2 , Petrova Petrova 3 , Pukhnachev V.V. 2 , Samatova V. 4
Организации
1 Institute of Science, School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand, e-mail: sergey@math.sut.ac.th
2 Lavrent’ev Institute of Hydrodynamics, 630090, Novosibirsk, Russia
3 Altai State University, Barnaul, Russia
4 Department of Computer Science, North Carolina State University, Raleigh, USA

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0001

Реферат: The presentation (03 June 2020) is based on several of our papers related with two-dimensional flows near a free critical point of an incompressible viscoelastic Maxwell medium with upper, lower, and corotational convective derivatives with the rheological constitutive law. It is performed by way of a complete compatibility analysis. The two solutions found are already known as substantially new solutions. Nonsingular solutions of the stress tensor at the critical point and bounded at infinity are constructed. Exact analytical formulae for the stress tensor were obtained.
Библиографическая ссылка: Meleshko S.V. , Moshkin N.H. , Petrova P. , Pukhnachev V.V. , Samatova V.
On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium
Глава монографии Mathematical Models and Integration Methods. – De Gruyter Proceedings in Mathematics., 2024. – C.111-123. DOI: 10.1515/9783111546667 OpenAlex
Идентификаторы БД:
OpenAlex: W4402415583
Цитирование в БД: Пока нет цитирований
Альметрики: