Application of the CABARET and WENO Schemes for Solving the Nonlinear Transport Equation in the Problem of Simulating the Propagation of a Sonic Boom Wave in the Atmosphere Научная публикация
Журнал |
Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 64, Номер: 5, Страницы: 1076-1088 Страниц : 13 DOI: 10.1134/s096554252470026x | ||||
Ключевые слова | sonic boom, nonlinear transport equation, propagation of small-amplitude waves, CABARET scheme, WENO scheme | ||||
Авторы |
|
||||
Организации |
|
Реферат:
The most convenient model describing the propagation of a sonic boom wave in the atmosphere is the augmented Burgers equation. In this work, we studied the influence of a numerical scheme on the result of solving an equation that takes into account the nonlinear nature of the propagation of sonic boom waves in the atmosphere. This equation is a key component of the augmented Burgers equation and determines the nature of the transformation of the disturbed pressure profile during its propagation. Two numerical schemes were used for solving: CABARET and WENO— quasi-monotonic end-to-end computing schemes, which make it possible to obtain a solution without significant numerical oscillations. The applicability of these schemes for solving the problem under consideration is analyzed.
Библиографическая ссылка:
Mishchenko P.A.
, Gimon T.A.
, Kolotilov V.A.
Application of the CABARET and WENO Schemes for Solving the Nonlinear Transport Equation in the Problem of Simulating the Propagation of a Sonic Boom Wave in the Atmosphere
Computational Mathematics and Mathematical Physics. 2024. V.64. N5. P.1076-1088. DOI: 10.1134/s096554252470026x WOS Scopus РИНЦ OpenAlex
Application of the CABARET and WENO Schemes for Solving the Nonlinear Transport Equation in the Problem of Simulating the Propagation of a Sonic Boom Wave in the Atmosphere
Computational Mathematics and Mathematical Physics. 2024. V.64. N5. P.1076-1088. DOI: 10.1134/s096554252470026x WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 21 сент. 2023 г. |
Принята к публикации: | 26 дек. 2023 г. |
Опубликована online: | 13 июн. 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001249179300008 |
Scopus: | 2-s2.0-85196146792 |
РИНЦ: | 68332928 |
OpenAlex: | W4399614988 |
Цитирование в БД:
Пока нет цитирований