Study of Linear Stability for Cylindrically Symmetrical States of Dynamic Equilibrium of Two-Component Vlasov–Poisson Plasma Научная публикация
Конференция |
12th International Conference on Mathematical Modeling in Physical Sciences 28-31 авг. 2023 , Belgrade |
||||
---|---|---|---|---|---|
Журнал |
Springer Proceedings in Mathematics and Statistics
ISSN: 2194-1009 |
||||
Вых. Данные | Год: 2024, Том: 446, Страницы: 471-480 Страниц : 10 DOI: 10.1007/978-3-031-52965-8_37 | ||||
Ключевые слова | Vlasov-Poisson plasma, cylindrically symmetrical dynamic equilibria, absolute linear instability | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (2)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0008 |
2 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0004 |
Реферат:
We consider the linear stability problem for dynamic equilibria of two-component Vlasov–Poisson plasma in cylindrically symmetrical statement. The hydrodynamic substitution of independent variables is performed in order to transform the Vlasov–Poisson equations to an infinite system of gas-dynamic equations. It is important that exact stationary solutions to gas-dynamic equations are equivalent to exact stationary solutions to the Vlasov–Poisson equations. The sufficient condition of linear stability for exact stationary solutions to the Vlasov–Poisson equations is studied. Previously, this condition was not reversed either for small or, especially, for finite perturbations. To fulfill such reversion in the linear approximation, these gas-dynamic equations are linearized near their exact stationary solutions. The a priori exponential estimate from below is constructed for a subclass of small cylindrically symmetrical perturbations of exact stationary solutions to gas-dynamic equations, which grow over time and are described by the field of Lagrangian displacements. The countable set of sufficient conditions for linear practical instability is obtained. Thus, the Newcomb-Gardner-Rosenbluth sufficient condition for linear stability of exact stationary solutions to the Vlasov–Poisson equations is reversed. Moreover, a formal nature of this condition is revealed with respect to the considered small perturbations. As a result, by the direct Lyapunov method, an absolute instability for exact stationary solutions to the mathematical model of two-component Vlasov–Poisson plasma in relation to small cylindrically symmetrical perturbations is proved.
Библиографическая ссылка:
Gubarev Y.G.
, Luo J.
Study of Linear Stability for Cylindrically Symmetrical States of Dynamic Equilibrium of Two-Component Vlasov–Poisson Plasma
Springer Proceedings in Mathematics and Statistics. 2024. V.446. P.471-480. DOI: 10.1007/978-3-031-52965-8_37 Scopus РИНЦ OpenAlex
Study of Linear Stability for Cylindrically Symmetrical States of Dynamic Equilibrium of Two-Component Vlasov–Poisson Plasma
Springer Proceedings in Mathematics and Statistics. 2024. V.446. P.471-480. DOI: 10.1007/978-3-031-52965-8_37 Scopus РИНЦ OpenAlex
Даты:
Опубликована online: | 24 мая 2024 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85195273602 |
РИНЦ: | 69070103 |
OpenAlex: | W4398251080 |
Цитирование в БД:
Пока нет цитирований