Sciact
  • EN
  • RU

ASYMPTOTIC ANALYSIS OF THE PROBLEM OF EQUILIBRIUM OF AN INHOMOGENEOUS BODY WITH HINGED RIGID INCLUSIONS OF VARIOUS WIDTHS Научная публикация

Журнал Journal of Applied Mechanics and Technical Physics
ISSN: 0021-8944
Вых. Данные Год: 2023, Том: 64, Номер: 5, Страницы: 911-920 Страниц : 10 DOI: 10.1134/s0021894423050206
Ключевые слова variational problem, rigid inclusion, non-penetration condition, elastic matrix, hinged connection
Авторы Лазарев Нюргун Петрович 1 , Ковтуненко Виктор Анатольевич 2,3
Организации
1 The Ammosov North-Eastern Federal University
2 Lavrentyev Institute of Hydrodynamics
3 University of Graz

Реферат: Two models are considered, which describe the equilibrium state of an inhomogeneous two-dimensional body with two connected rigid inclusions. The first model corresponds to an elastic body with two-dimensional rigid inclusions located in regions with a constant width (curvilinear rectangle and trapezoid). The second model involves thin inclusions described by curves. In both models, it is assumed that there is a crack described by the same curve on the interface between the elastic matrix and rigid inclusions. The crack boundaries are subjected to a one-sided condition of non-penetration. The dependence of the solutions of equilibrium problems on the width of two-dimensional inclusions is studied. It is shown that the solutions of equilibrium problems in the presence of two-dimensional inclusions in a strong topology are reduced to the solutions of problems for thin inclusions with the width parameter tending to zero.
Библиографическая ссылка: Lazarev N.P. , Kovtunenko V.A.
ASYMPTOTIC ANALYSIS OF THE PROBLEM OF EQUILIBRIUM OF AN INHOMOGENEOUS BODY WITH HINGED RIGID INCLUSIONS OF VARIOUS WIDTHS
Journal of Applied Mechanics and Technical Physics. 2023. V.64. N5. P.911-920. DOI: 10.1134/s0021894423050206 WOS Scopus РИНЦ OpenAlex
Оригинальная: Лазарев Н.П. , Ковтуненко В.А.
АСИМПТОТИЧЕСКИЙ АНАЛИЗ ЗАДАЧИ О РАВНОВЕСИИ НЕОДНОРОДНОГО ТЕЛА С ШАРНИРНО СОЕДИНЕННЫМИ ЖЕСТКИМИ ВКЛЮЧЕНИЯМИ РАЗЛИЧНОЙ ШИРИНЫ
Прикладная механика и техническая физика. 2023. Т.64. №5 (381). С.205-215. DOI: 10.15372/PMTF202315275 РИНЦ
Даты:
Поступила в редакцию: 23 мар. 2023 г.
Принята к публикации: 24 апр. 2023 г.
Опубликована в печати: 15 янв. 2024 г.
Идентификаторы БД:
Web of science: WOS:001142921400014
Scopus: 2-s2.0-85182495096
РИНЦ: 60872250
OpenAlex: W4390871118
Цитирование в БД:
БД Цитирований
OpenAlex 5
РИНЦ 4
Scopus 7
Web of science 5
Альметрики: