Sciact
  • EN
  • RU

Lateral-Concentration Inhomogeneities in Flows of Suspensions of Rod-like Particles: The Approach of the Theory of Anisotropic Micropolar Fluid Научная публикация

Журнал Mathematics
ISSN: 2227-7390
Вых. Данные Год: 2023, Том: 11, Номер: 23, Номер статьи : 4740, Страниц : 25 DOI: 10.3390/math11234740
Ключевые слова suspensions; rod-like particles; micropolar fluid; thermodynamics; hysteresis; concentration inhomogeneity
Авторы Shelukhin V.V. 1,2
Организации
1 Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
2 Mathematical Department, Novosibirsk State University, 630090 Novosibirsk, Russia

Информация о финансировании (2)

1 Российский научный фонд 20-19-00058
2 Министерство науки и высшего образования Российской Федерации FWGG-2021-0002

Реферат: To tackle suspensions of particles of any shape, the thermodynamics of a Cosserat continuum are developed by the method suggested by Landau and Khalatnikov for the mathematical description of the super-fluidity of liquid 2He. Such an approach allows us to take into account the rotation of particles and their form. The flows of suspensions of neutrally buoyant rod-like particles are considered in detail. These suspensions include linear polymer solutions, FD-virus and worm-like micelles. The anisotropy of the suspensions is determined through the inclusion of the micro-inertia tensor in the rheological constitutive equations. The theory predicts gradient banding, temporal volatility of apparent viscosity and hysteresis of the flux-pressure curve. The transition from the isotropic phase to the nematic phase is also captured. Our mathematical model predicts the formation of flock-like inhomogeneities of concentration jointly with the hindrance effect
Библиографическая ссылка: Shelukhin V.V.
Lateral-Concentration Inhomogeneities in Flows of Suspensions of Rod-like Particles: The Approach of the Theory of Anisotropic Micropolar Fluid
Mathematics. 2023. V.11. N23. 4740 :1-25. DOI: 10.3390/math11234740 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 24 окт. 2023 г.
Принята к публикации: 20 нояб. 2023 г.
Опубликована в печати: 23 нояб. 2023 г.
Идентификаторы БД:
Web of science: WOS:001117931500001
Scopus: 2-s2.0-85178932222
РИНЦ: 65433376
OpenAlex: W4388942080
Цитирование в БД:
БД Цитирований
РИНЦ 2
Альметрики: