Lateral-Concentration Inhomogeneities in Flows of Suspensions of Rod-like Particles: The Approach of the Theory of Anisotropic Micropolar Fluid Научная публикация
| Журнал |
Mathematics
ISSN: 2227-7390 |
||||
|---|---|---|---|---|---|
| Вых. Данные | Год: 2023, Том: 11, Номер: 23, Номер статьи : 4740, Страниц : 25 DOI: 10.3390/math11234740 | ||||
| Ключевые слова | suspensions; rod-like particles; micropolar fluid; thermodynamics; hysteresis; concentration inhomogeneity | ||||
| Авторы |
|
||||
| Организации |
|
Информация о финансировании (2)
| 1 | Российский научный фонд | 20-19-00058 |
| 2 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0002 |
Реферат:
To tackle suspensions of particles of any shape, the thermodynamics of a Cosserat continuum are developed by the method suggested by Landau and Khalatnikov for the mathematical description of the super-fluidity of liquid 2He. Such an approach allows us to take into account the rotation of particles and their form. The flows of suspensions of neutrally buoyant rod-like particles are considered in detail. These suspensions include linear polymer solutions, FD-virus and worm-like micelles. The anisotropy of the suspensions is determined through the inclusion of the micro-inertia tensor in the rheological constitutive equations. The theory predicts gradient banding, temporal volatility of apparent viscosity and hysteresis of the flux-pressure curve. The transition from the isotropic phase to the nematic phase is also captured. Our mathematical model predicts the formation of flock-like inhomogeneities of concentration jointly with the hindrance effect
Библиографическая ссылка:
Shelukhin V.V.
Lateral-Concentration Inhomogeneities in Flows of Suspensions of Rod-like Particles: The Approach of the Theory of Anisotropic Micropolar Fluid
Mathematics. 2023. V.11. N23. 4740 :1-25. DOI: 10.3390/math11234740 WOS Scopus РИНЦ OpenAlex
Lateral-Concentration Inhomogeneities in Flows of Suspensions of Rod-like Particles: The Approach of the Theory of Anisotropic Micropolar Fluid
Mathematics. 2023. V.11. N23. 4740 :1-25. DOI: 10.3390/math11234740 WOS Scopus РИНЦ OpenAlex
Даты:
| Поступила в редакцию: | 24 окт. 2023 г. |
| Принята к публикации: | 20 нояб. 2023 г. |
| Опубликована в печати: | 23 нояб. 2023 г. |
Идентификаторы БД:
| Web of science: | WOS:001117931500001 |
| Scopus: | 2-s2.0-85178932222 |
| РИНЦ: | 65433376 |
| OpenAlex: | W4388942080 |
Цитирование в БД:
| БД | Цитирований |
|---|---|
| РИНЦ | 2 |