The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation Научная публикация
Журнал |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 13, Номер: 3, Страницы: 460-471 Страниц : 12 DOI: 10.1134/s1990478919030074 | ||||||||
Ключевые слова | stratified fluid, stationary flow, instability, small perturbation, Taylor–Goldstein equation, Miles Theorem, analytical solution, asymptotic expansion | ||||||||
Авторы |
|
||||||||
Организации |
|
Информация о финансировании (2)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0008 |
2 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0004 |
Реферат:
We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.
Библиографическая ссылка:
Gavril’eva A.A.
, Gubarev Y.G.
, Lebedev M.P.
The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation
Journal of Applied and Industrial Mathematics. 2019. V.13. N3. P.460-471. DOI: 10.1134/s1990478919030074 Scopus РИНЦ OpenAlex
The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation
Journal of Applied and Industrial Mathematics. 2019. V.13. N3. P.460-471. DOI: 10.1134/s1990478919030074 Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 22 апр. 2019 г. |
Принята к публикации: | 13 июн. 2019 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85071622115 |
РИНЦ: | 41625885 |
OpenAlex: | W2971342713 |