Sciact
  • EN
  • RU

Asymptotic modeling of steady vibrations of thin inclusions in a thermoelastic composite Научная публикация

Журнал Zeitschrift fur Angewandte Mathematik und Physik
ISSN: 0044-2275
Вых. Данные Год: 2023, Том: 74, Номер статьи : 195, Страниц : 19 DOI: 10.1007/s00033-023-02088-5
Ключевые слова Linear thermoelasticity, Steady vibrations, Composite material, Thin inclusion, Asymptotic analysis, Effective characteristics
Авторы Furtsev Alexey I. 1 , Fankina Irina V. 1 , Rodionov Alexander A. 2 , Ponomarev Dmitri A. 2
Организации
1 Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
2 Saint Petersburg State Marine Technical University

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Реферат: . The paper addresses the mathematical justification of a model describing steady vibrations for a planar thermoelastic body with an incorporated thin inclusion. The body is composed of three parts: two adherents and an adhesive layer between them, and we begin with a general mathematical formulation of a problem. By means of the modern methods of asymptotic analysis, we rigorously investigate the behavior of solutions as the thickness of the adhesive tends to zero. As a result, we construct the model that corresponds to the limit case. It turned out that the adhesive is reduced to the inclusion, which is thin (of zero thickness) and relatively hard (compared to the rigidity of the surrounding body). Furthermore, we supplement the obtained results with numerical experiments demonstrating the consistency of the theoretical conclusions
Библиографическая ссылка: Furtsev A.I. , Fankina I.V. , Rodionov A.A. , Ponomarev D.A.
Asymptotic modeling of steady vibrations of thin inclusions in a thermoelastic composite
Zeitschrift fur Angewandte Mathematik und Physik. 2023. V.74. 195 :1-19. DOI: 10.1007/s00033-023-02088-5 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 3 июл. 2023 г.
Принята к публикации: 8 авг. 2023 г.
Опубликована online: 15 сент. 2023 г.
Идентификаторы БД:
Web of science: WOS:001066773900003
Scopus: 2-s2.0-85171550852
РИНЦ: 54772508
OpenAlex: W4386776930
Цитирование в БД:
БД Цитирований
OpenAlex 3
Scopus 5
РИНЦ 5
Web of science 4
Альметрики: