Sciact
  • EN
  • RU

A generalization of the Kelvin–Voigt model with pressure-dependent moduli in which both stress and strain appear linearly Научная публикация

Журнал Mathematical Methods in the Applied Sciences
ISSN: 0170-4214
Вых. Данные Год: 2023, Том: 46, Номер: 14, Страницы: 15641-15654 Страниц : 14 DOI: 10.1002/mma.9417
Ключевые слова CREEP, CYCLIC BEHAVIOR, IMPLICIT CONSTITUTIVE RESPONSE, KELVIN-VOIGT MATERIAL, MAXIMAL MONOTONE GRAPH, MIXED VARIATIONAL PROBLEM, NONLINEAR PARABOLIC SYSTEM, THRESHOLDING, VISCOELASTICITY
Авторы Itou Hiromichi 1 , Ковтуненко Виктор Анатольевич 2,3 , Rajagopal Kumbakonam R. 4
Организации
1 Tokyo University of Science
2 Lavrentyev Institute of Hydrodynamics
3 University of Graz
4 Texas A&M University

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Реферат: A generalization of the Kelvin–Voigt model that can represent viscoelastic materials whose moduli depend on the mechanical pressure is derived from an implicit constitutive relation in which both the Cauchy stress and the linearized strain appear linearly. For consistency with the assumption of small deformation, a thresholding approach is applied. The proposed mixed variational problem is investigated for its well-posedness within the context of maximal monotone and coercive graphs. For isotropic extension or compression, a semi-analytic solution of the generalization of the Kelvin–Voigt problem under stress control is presented. The corresponding numerical simulation for monotone and cyclic pressure loading is carried out, and the results then compared against the linearized model.
Библиографическая ссылка: Itou H. , Kovtunenko V.A. , Rajagopal K.R.
A generalization of the Kelvin–Voigt model with pressure-dependent moduli in which both stress and strain appear linearly
Mathematical Methods in the Applied Sciences. 2023. V.46. N14. P.15641-15654. DOI: 10.1002/mma.9417 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 11 апр. 2023 г.
Опубликована в печати: 27 мая 2023 г.
Идентификаторы БД:
Web of science: WOS:000994013600001
Scopus: 2-s2.0-85160742499
РИНЦ: 60780238
OpenAlex: W4378575704
Цитирование в БД:
БД Цитирований
OpenAlex 4
Scopus 3
Web of science 2
Альметрики: