A generalization of the Kelvin–Voigt model with pressure-dependent moduli in which both stress and strain appear linearly Научная публикация
Журнал |
Mathematical Methods in the Applied Sciences
ISSN: 0170-4214 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2023, Том: 46, Номер: 14, Страницы: 15641-15654 Страниц : 14 DOI: 10.1002/mma.9417 | ||||||||
Ключевые слова | CREEP, CYCLIC BEHAVIOR, IMPLICIT CONSTITUTIVE RESPONSE, KELVIN-VOIGT MATERIAL, MAXIMAL MONOTONE GRAPH, MIXED VARIATIONAL PROBLEM, NONLINEAR PARABOLIC SYSTEM, THRESHOLDING, VISCOELASTICITY | ||||||||
Авторы |
|
||||||||
Организации |
|
Информация о финансировании (1)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0010 |
Реферат:
A generalization of the Kelvin–Voigt model that can represent viscoelastic materials whose moduli depend on the mechanical pressure is derived from an implicit constitutive relation in which both the Cauchy stress and the linearized strain appear linearly. For consistency with the assumption of small deformation, a thresholding approach is applied. The proposed mixed variational problem is investigated for its well-posedness within the context of maximal monotone and coercive graphs. For isotropic extension or compression, a semi-analytic solution of the generalization of the Kelvin–Voigt problem under stress control is presented. The corresponding numerical simulation for monotone and cyclic pressure loading is carried out, and the results then compared against the linearized model.
Библиографическая ссылка:
Itou H.
, Kovtunenko V.A.
, Rajagopal K.R.
A generalization of the Kelvin–Voigt model with pressure-dependent moduli in which both stress and strain appear linearly
Mathematical Methods in the Applied Sciences. 2023. V.46. N14. P.15641-15654. DOI: 10.1002/mma.9417 WOS Scopus РИНЦ OpenAlex
A generalization of the Kelvin–Voigt model with pressure-dependent moduli in which both stress and strain appear linearly
Mathematical Methods in the Applied Sciences. 2023. V.46. N14. P.15641-15654. DOI: 10.1002/mma.9417 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 11 апр. 2023 г. |
Опубликована в печати: | 27 мая 2023 г. |
Идентификаторы БД:
Web of science: | WOS:000994013600001 |
Scopus: | 2-s2.0-85160742499 |
РИНЦ: | 60780238 |
OpenAlex: | W4378575704 |