Variational Approach to Modeling of Curvilinear Thin Inclusions with Rough Boundaries in Elastic Bodies: Case of a Rod-Type Inclusion Научная публикация
| Журнал |
Mathematics
ISSN: 2227-7390 |
||
|---|---|---|---|
| Вых. Данные | Год: 2023, Том: 11, Номер: 16, Номер статьи : 3447, Страниц : 14 DOI: 10.3390/math11163447 | ||
| Ключевые слова | ASYMPTOTIC ANALYSIS, INHOMOGENEOUS ELASTIC BODY, THIN INCLUSION, ROUGH BOUNDARY, INTERFACE CONDITION | ||
| Авторы |
|
||
| Организации |
|
Информация о финансировании (1)
| 1 | Министерство науки и высшего образования Российской Федерации | FWGG-2022-0001 |
Реферат:
In the framework of 2D-elasticity, an equilibrium problem for an inhomogeneous body with a curvilinear inclusion located strictly inside the body is considered. The elastic properties of the inclusion are assumed to depend on a small positive parameter δ characterizing its width and are assumed to be proportional to δ−1. Moreover, it is supposed that the inclusion has a curvilinear rough boundary. Relying on the variational formulation of the equilibrium problem, we perform the asymptotic analysis, as δ tends to zero. As a result, a variational model of an elastic body containing a thin curvilinear rod is constructed. Numerical calculations give a relative error between the initial and limit problems depending on δ.
Библиографическая ссылка:
Rudoy E.
, Sazhenkov S.
Variational Approach to Modeling of Curvilinear Thin Inclusions with Rough Boundaries in Elastic Bodies: Case of a Rod-Type Inclusion
Mathematics. 2023. V.11. N16. 3447 :1-14. DOI: 10.3390/math11163447 WOS Scopus РИНЦ OpenAlex
Variational Approach to Modeling of Curvilinear Thin Inclusions with Rough Boundaries in Elastic Bodies: Case of a Rod-Type Inclusion
Mathematics. 2023. V.11. N16. 3447 :1-14. DOI: 10.3390/math11163447 WOS Scopus РИНЦ OpenAlex
Даты:
| Поступила в редакцию: | 6 июл. 2023 г. |
| Принята к публикации: | 7 авг. 2023 г. |
| Опубликована в печати: | 8 авг. 2023 г. |
Идентификаторы БД:
| Web of science: | WOS:001056508200001 |
| Scopus: | 2-s2.0-85199330107 |
| РИНЦ: | 61500201 |
| OpenAlex: | W4385650486 |