Sciact
  • EN
  • RU

Directional differentiability for shape optimization with variational inequalities as constraints Научная публикация

Журнал ESAIM: Control, Optimisation and Calculus of Variations
ISSN: 1292-8119
Вых. Данные Год: 2023, Том: 29, Номер статьи : 64, Страниц : 30 DOI: 10.1051/cocv/2023056
Ключевые слова OPTIMAL CONTROL, SHAPE OPTIMIZATION, VARIATIONAL INEQUALITY, PENALIZATION, LAGRANGE METHOD, LAVRENTIEV REGULARIZATION, FREE DISCONTINUITY, NON-PENETRATING CRACK
Авторы Ковтуненко Виктор Анатольевич 1,2 , Kunisch Karl 2
Организации
1 Lavrentyev Institute of Hydrodynamics
2 University of Graz

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0010

Реферат: For equilibrium constrained optimization problems subject to nonlinear state equations, the property of directional differentiability with respect to a parameter is studied. An abstract class of parameter dependent shape optimization problems is investigated with penalty constraints linked to variational inequalities. Based on the Lagrange multiplier approach, on smooth penalties due to Lavrentiev regularization, and on adjoint operators, a shape derivative is obtained. The explicit formula provides a descent direction for the gradient algorithm identifying the shape of the breaking-line from a boundary measurement. A numerical example is presented for a nonlinear Poisson problem modeling Barenblatt’s surface energies and non-penetrating cracks.
Библиографическая ссылка: Kovtunenko V.A. , Kunisch K.
Directional differentiability for shape optimization with variational inequalities as constraints
ESAIM: Control, Optimisation and Calculus of Variations. 2023. V.29. 64 :1-30. DOI: 10.1051/cocv/2023056 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 30 янв. 2023 г.
Принята к публикации: 19 июл. 2023 г.
Опубликована в печати: 8 авг. 2023 г.
Идентификаторы БД:
Web of science: WOS:001044087500001
Scopus: 2-s2.0-85168729629
РИНЦ: 60776344
OpenAlex: W4384927682
Цитирование в БД:
БД Цитирований
OpenAlex 3
РИНЦ 2
Scopus 3
Web of science 2
Альметрики: