Sciact
  • EN
  • RU

Combined experimental/theoretical approach to residual stresses within multiplicative elasto-plasticity Научная публикация

Журнал International Journal of Solids and Structures
ISSN: 0020-7683
Вых. Данные Год: 2022, Том: 254-255, Номер статьи : 111924, Страниц : 9 DOI: 10.1016/j.ijsolstr.2022.111924
Ключевые слова Residual stresses Multiplicative elasto-plasticity Weldments Weak invariance Experimental/theoretical analysis
Авторы Tagiltsev I.I. 1,2 , Shutov A.V. 1,2
Организации
1 Lavrentyev Institute of Hydrodynamics
2 Novosibirsk State University

Информация о финансировании (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0012

Реферат: The study is devoted to geometrically non-linear modelling of viscoplastic structures with residual stresses. We advocate and develop a special approach to residual stresses based on the transition between reference configurations. The finite strain kinematics of the viscoplastic material is modelled by the multiplicative decomposition of the deformation gradient tensor. Numerical algorithms originally developed for unstressed materials are extended to materials with pre-stresses. Owing to the weak invariance of constitutive equations, the incorporation of pre-stresses happens without additional costs. Thus, the advocated approach is especially efficient. A novel experimental/theoretical method for assessment of residual stresses in welded structures is presented; the method combines advantages of purely experimental and theoretical approaches. To demonstrate the applicability of the proposed procedure, we simulate plate welding. As an example we show that the procedure allows extrapolation of the field of residual stresses away from the measurement points. As another example, we address the reduction of weldment-related residual stresses by mechanical treatment.
Библиографическая ссылка: Tagiltsev I.I. , Shutov A.V.
Combined experimental/theoretical approach to residual stresses within multiplicative elasto-plasticity
International Journal of Solids and Structures. 2022. V.254-255. 111924 :1-9. DOI: 10.1016/j.ijsolstr.2022.111924 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000877377800003
Scopus: 2-s2.0-85136152223
РИНЦ: 56518615
OpenAlex: W3144560109
Цитирование в БД:
БД Цитирований
Scopus 6
OpenAlex 7
Web of science 5
Альметрики: