Sciact
  • EN
  • RU

Asymptotic modelling of bonded plates by a soft thin adhesive layer Научная публикация

Журнал Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304
Вых. Данные Год: 2020, Том: 17, Страницы: 615-625 Страниц : 11 DOI: 10.33048/semi.2020.17.040
Ключевые слова Biharmonic equation; Bonded structure; Composite material; Kirchhoff-Love's plate; Spring type interface condition
Авторы Rudoy E.M. 1,2
Организации
1 Lavrentyev Institute of Hydrodynamics
2 Novosibirsk State University

Реферат: In the present paper, a composite structure is considered. The structure is made of three homogeneous plates: two linear elastic adherents and a thin adhesive. It is assumed that elastic properties of the adhesive layer depend on its thickness " as " to the power of 3. Passage to the limit as " goes to zero is justified and a limit model is found in which the influence of the thin adhesive layer is replaced by an interface condition between adherents. As a result, we have analog of the spring type condition in the plate theory. Moreover, a representation formula of the solution in the adhesive layer has been obtained.
Библиографическая ссылка: Rudoy E.M.
Asymptotic modelling of bonded plates by a soft thin adhesive layer
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2020. V.17. P.615-625. DOI: 10.33048/semi.2020.17.040 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 21 янв. 2020 г.
Идентификаторы БД:
Web of science: WOS:000529942900001
Scopus: 2-s2.0-85091378524
РИНЦ: 44726552
OpenAlex: W3020177222
Цитирование в БД:
БД Цитирований
Scopus 9
Web of science 7
OpenAlex 3
РИНЦ 10
Альметрики: