Asymptotic modelling of bonded plates by a soft thin adhesive layer Научная публикация
Журнал |
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports
ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2020, Том: 17, Страницы: 615-625 Страниц : 11 DOI: 10.33048/semi.2020.17.040 | ||||
Ключевые слова | Biharmonic equation; Bonded structure; Composite material; Kirchhoff-Love's plate; Spring type interface condition | ||||
Авторы |
|
||||
Организации |
|
Реферат:
In the present paper, a composite structure is considered. The structure is made of three homogeneous plates: two linear elastic adherents and a thin adhesive. It is assumed that elastic properties of the adhesive layer depend on its thickness " as " to the power of 3. Passage to the limit as " goes to zero is justified and a limit model is found in which the influence of the thin adhesive layer is replaced by an interface condition between adherents. As a result, we have analog of the spring type condition in the plate theory. Moreover, a representation formula of the solution in the adhesive layer has been obtained.
Библиографическая ссылка:
Rudoy E.M.
Asymptotic modelling of bonded plates by a soft thin adhesive layer
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2020. V.17. P.615-625. DOI: 10.33048/semi.2020.17.040 WOS Scopus РИНЦ OpenAlex
Asymptotic modelling of bonded plates by a soft thin adhesive layer
Сибирские электронные математические известия / Siberian Electronic Mathematical Reports. 2020. V.17. P.615-625. DOI: 10.33048/semi.2020.17.040 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 21 янв. 2020 г. |
Идентификаторы БД:
Web of science: | WOS:000529942900001 |
Scopus: | 2-s2.0-85091378524 |
РИНЦ: | 44726552 |
OpenAlex: | W3020177222 |