Study of instability for one-dimensional dynamic equilibrium states of self-gravitating Vlasov–Poisson gas Научная публикация
Журнал |
Lobachevskii Journal of Mathematics
ISSN: 1995-0802 , E-ISSN: 1818-9962 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 43, Номер: 12, Страницы: 3478-3485 Страниц : 8 DOI: 10.1134/S1995080222150100 | ||||
Ключевые слова | VLASOV-POISSON EQUATIONS, STATIONARY SOLUTIONS, SMALL PERTURBATIONS, ANTONOV CRITERION, HYDRODYNAMIC SUBSTITUTION, GASDYNAMIC EQUATIONS, DIRECT LYAPUNOV METHOD, LYAPUNOV FUNCTIONAL, DIFFERENTIAL INEQUALITY, A PRIORI ESTIMATE, INSTABILITY, ANALYTICAL EXAMPLES | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (2)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0008 |
2 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0004 |
Реферат:
In this paper, the linear stability problem for one-dimensional (1D) states of dynamic equilibriumof a boundless collisionless self-gravitating Vlasov–Poisson gas was considered. Using the replacing of independent variables in the form of hydrodynamic substitution, a transition was made from the kinetic equations to an infinite system of gas-dynamic equations in the “vortex shallow water” and Boussinesq approximations. The absolute linear instability for dynamic states of local thermodynamic equilibria of the Vlasov–Poisson gas with respect to 1D perturbations was proved by the direct Lyapunov method. In the process of proving instability, a formal nature of the well-known Antonov criterion for linear stability of dynamic equilibrium states of selfgravitating stellar systems was discovered, so that this criterion is valid only with respect to some incomplete unclosed subclass of small 1D perturbations. Also, the constructive sufficient conditions for linear practical instability of the studied dynamic states of local thermodynamic equilibria with respect to 1D perturbations are obtained, an a priori exponential estimate from below is found, and initial data are described for small 1D perturbations increasing in time. To confirm the results obtained, analytical examples of the studied dynamic equilibrium states and small 1D perturbations superimposed on them, which grow in time according to the found estimate, are constructed.
Библиографическая ссылка:
Gubarev Y.G.
, Sun S.
Study of instability for one-dimensional dynamic equilibrium states of self-gravitating Vlasov–Poisson gas
Lobachevskii Journal of Mathematics. 2022. V.43. N12. P.3478-3485. DOI: 10.1134/S1995080222150100 WOS Scopus РИНЦ OpenAlex
Study of instability for one-dimensional dynamic equilibrium states of self-gravitating Vlasov–Poisson gas
Lobachevskii Journal of Mathematics. 2022. V.43. N12. P.3478-3485. DOI: 10.1134/S1995080222150100 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 6 сент. 2022 г. |
Принята к публикации: | 30 сент. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000953737000009 |
Scopus: | 2-s2.0-85150457202 |
РИНЦ: | 50767192 |
OpenAlex: | W4327807942 |
Цитирование в БД:
Пока нет цитирований