Multidimensional conservation laws and integrable systems II Научная публикация
Журнал |
Studies in Applied Mathematics
ISSN: 0022-2526 |
||
---|---|---|---|
Вых. Данные | Год: 2021, Том: 148, Номер: 2, Страницы: 813-824 Страниц : 12 DOI: 10.1111/sapm.12460 | ||
Ключевые слова | INTEGRABLE SYSTEM, KORTEWEG-DE VRIES EQUATION, MIKHALëV EQUATION, MULTIDIMENSIONAL CONSERVATION LAWS | ||
Авторы |
|
||
Организации |
|
Реферат:
In this paper we continue investigation of a new property of two-dimensional integrable systems—existence of infinitely many local three-dimensional conservation laws for pairs of integrable two-dimensional commuting flows. Multicomponent two-dimensional hydrodynamic reductions of the Mikhalëv equation are considered. Infinitely many three-dimensional local conservation laws for the Korteweg–de Vries pair of commuting flows are constructed. Thus, we show that pairs of commuting dispersive two-dimensional systems also possess infinitely many local three-dimensional conservation laws. They can be used for averaging of multiparametric families of solutions to the Mikhalëv equation.
Библиографическая ссылка:
Makridin Z.V.
, Pavlov M.V.
Multidimensional conservation laws and integrable systems II
Studies in Applied Mathematics. 2021. V.148. N2. P.813-824. DOI: 10.1111/sapm.12460 WOS Scopus РИНЦ OpenAlex
Multidimensional conservation laws and integrable systems II
Studies in Applied Mathematics. 2021. V.148. N2. P.813-824. DOI: 10.1111/sapm.12460 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000706879100001 |
Scopus: | 2-s2.0-85116888770 |
РИНЦ: | 47512344 |
OpenAlex: | W2969818583 |