Sciact
  • EN
  • RU

Multidimensional conservation laws and integrable systems II Научная публикация

Журнал Studies in Applied Mathematics
ISSN: 0022-2526
Вых. Данные Год: 2021, Том: 148, Номер: 2, Страницы: 813-824 Страниц : 12 DOI: 10.1111/sapm.12460
Ключевые слова INTEGRABLE SYSTEM, KORTEWEG-DE VRIES EQUATION, MIKHALëV EQUATION, MULTIDIMENSIONAL CONSERVATION LAWS
Авторы Makridin Zakhar V. 1 , Pavlov Maxim V. 1
Организации
1 Novosibirsk State University

Реферат: In this paper we continue investigation of a new property of two-dimensional integrable systems—existence of infinitely many local three-dimensional conservation laws for pairs of integrable two-dimensional commuting flows. Multicomponent two-dimensional hydrodynamic reductions of the Mikhalëv equation are considered. Infinitely many three-dimensional local conservation laws for the Korteweg–de Vries pair of commuting flows are constructed. Thus, we show that pairs of commuting dispersive two-dimensional systems also possess infinitely many local three-dimensional conservation laws. They can be used for averaging of multiparametric families of solutions to the Mikhalëv equation.
Библиографическая ссылка: Makridin Z.V. , Pavlov M.V.
Multidimensional conservation laws and integrable systems II
Studies in Applied Mathematics. 2021. V.148. N2. P.813-824. DOI: 10.1111/sapm.12460 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000706879100001
Scopus: 2-s2.0-85116888770
РИНЦ: 47512344
OpenAlex: W2969818583
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 3
Web of science 1
Альметрики: