Sciact
  • EN
  • RU

Constructing a Minimal Basis of Invariants for Differential Algebra of $$2\times 2$$ Matrices Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789
Output data Year: 2022, Volume: 16, Number: 2, Pages: 356-364 Pages count : 9 DOI: 10.1134/s1990478922020156
Tags affine invariant; algebraic invariants; differential invariant; Fricke formula; invariant differentiation operator; minimal basis of invariants
Authors Vasyutkin S.A. 1,2 , Chupakhin A.P. 1,2
Affiliations
1 Novosibirsk State University
2 Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Funding (1)

1 Министерство науки и высшего образования Российской Федерации FWGG-2021-0009

Abstract: We construct a basis of invariants for the set of second-order matrices consisting of theoriginal matrix and its derivatives. It is shown that the presence of derivatives imposes connectionson the elements of this set and reduces the number of elements in the basis compared to the purelyalgebraic case. Formulas for calculating algebraic invariants of such a set are proved. We state ageneralization of Fricke’s formulas in terms of the traces of the product of matrices in this set.
Cite: Vasyutkin S.A. , Chupakhin A.P.
Constructing a Minimal Basis of Invariants for Differential Algebra of $$2\times 2$$ Matrices
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.356-364. DOI: 10.1134/s1990478922020156 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: 2-s2.0-85142209191
Elibrary: 51749239
OpenAlex: W4312981546
Citing: Пока нет цитирований
Altmetrics: