Constructing a Minimal Basis of Invariants for Differential Algebra of $$2\times 2$$ Matrices Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 16, Number: 2, Pages: 356-364 Pages count : 9 DOI: 10.1134/s1990478922020156 | ||||
Tags | affine invariant; algebraic invariants; differential invariant; Fricke formula; invariant differentiation operator; minimal basis of invariants | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Министерство науки и высшего образования Российской Федерации | FWGG-2021-0009 |
Abstract:
We construct a basis of invariants for the set of second-order matrices consisting of theoriginal matrix and its derivatives. It is shown that the presence of derivatives imposes connectionson the elements of this set and reduces the number of elements in the basis compared to the purelyalgebraic case. Formulas for calculating algebraic invariants of such a set are proved. We state ageneralization of Fricke’s formulas in terms of the traces of the product of matrices in this set.
Cite:
Vasyutkin S.A.
, Chupakhin A.P.
Constructing a Minimal Basis of Invariants for Differential Algebra of $$2\times 2$$ Matrices
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.356-364. DOI: 10.1134/s1990478922020156 Scopus РИНЦ OpenAlex
Constructing a Minimal Basis of Invariants for Differential Algebra of $$2\times 2$$ Matrices
Journal of Applied and Industrial Mathematics. 2022. V.16. N2. P.356-364. DOI: 10.1134/s1990478922020156 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: | 2-s2.0-85142209191 |
Elibrary: | 51749239 |
OpenAlex: | W4312981546 |
Citing:
Пока нет цитирований