Sciact
  • EN
  • RU

Development and application of fast methods for computing momentum transfer between gas and dust in supercomputer simulation of planet formation Full article

Conference Workshop on Numerical Modeling in MHD and Plasma Physics: methods, tools, and outcomes. Honor of academician Anatoly Alekseev's 90th Birthday
11-12 Oct 2018 , Новосибирск
Journal Journal of Physics: Conference Series
ISSN: 1742-6588
Output data Year: 2018, Volume: 1103, Article number : 012008, Pages count : 14 DOI: 10.1088/1742-6596/1103/1/012008
Authors Stoyanovskaya O P 1,2 , Akimkin V V 3 , Vorobyov E I 4,5 , Glushko T A 2 , Pavlyuchenkov Ya N 3 , Snytnikov V N 6,2 , Snytnikov N V 7
Affiliations
1 Institute of Computational Technologies SB RAS
2 Novosibirsk State University
3 Institute of Astronomy RAS
4 Research Institute of Physics, Southern Federal University
5 Department of Astrophysics, University of Vienna
6 Boreskov Institute of Catalysis SB RAS
7 Institute of Computational Mathematics and Mathematical Geophysics SB RAS

Abstract: Circumstellar discs, from which planetary systems are formed, consist of gas, dust and solids. Simulations of self-consistent dynamics of gas, dust and solids in circumstellar discs is a challenging problem. In the paper we present fast algorithms for computing the drag force (momentum transfer) between solid phase and gas. These algorithms (a) are universal and applicable to dust and solids with any sizes smaller than the mean free path of gas molecules, (b) can be used to calculate the momentum transfer between dust and gas instead of one-way effect, as it is done in many models, (c) can perform simulations, without a loss in accuracy, with the time step determined by gas-dynamic parameters rather than by drag force, and (d) are compatible with the widely used parallel algorithms for solving 3D equations of gas dynamics, hydrodynamic equations for dust, and the collisionless Boltzmann equation for large bodies. Preliminary results of supercomputer simulation of the gas-dust disc dynamics within the developed approach are reported.
Cite: Stoyanovskaya O.P. , Akimkin V.V. , Vorobyov E.I. , Glushko T.A. , Pavlyuchenkov Y.N. , Snytnikov V.N. , Snytnikov N.V.
Development and application of fast methods for computing momentum transfer between gas and dust in supercomputer simulation of planet formation
Journal of Physics: Conference Series. 2018. V.1103. 012008 :1-14. DOI: 10.1088/1742-6596/1103/1/012008 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: 2-s2.0-85056414942
Elibrary: 38624170
OpenAlex: W3104587433
Citing:
DB Citing
Scopus 4
OpenAlex 4
Altmetrics: