Couette Flow of a Viscoelastic Maxwell-Type Medium with Two Relaxation Times Научная публикация
Журнал |
Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2018, Страницы: 137–148 Страниц : DOI: 10.1134/S008154381801011X | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский фонд фундаментальных исследований | 16-01-00127 |
Реферат:
A Couette flow of a viscoelastic medium is considered that is described by the
Johnson–Segalman–Oldroyd model with two relaxation times. The development of singularities related to the appearance of internal discontinuities is studied both analytically and numerically within one-dimensional nonstationary hyperbolic models of viscoelastic Maxwell-type
media. A numerical model for calculating nonstationary one-dimensional discontinuous solutions is constructed, discontinuous solutions are studied, and the hysteresis phenomenon, i.e.,
the depende
Библиографическая ссылка:
Liapidevskii V.Y.
Couette Flow of a Viscoelastic Maxwell-Type Medium with Two Relaxation Times
Proceedings of the Steklov Institute of Mathematics. 2018. P.137–148. DOI: 10.1134/S008154381801011X WOS Scopus РИНЦ OpenAlex
Couette Flow of a Viscoelastic Maxwell-Type Medium with Two Relaxation Times
Proceedings of the Steklov Institute of Mathematics. 2018. P.137–148. DOI: 10.1134/S008154381801011X WOS Scopus РИНЦ OpenAlex
Оригинальная:
Ляпидевский В.Ю.
Течение Куэтта вязкоупругой среды максвелловского типа с двумя временами релаксации
ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМЕНИ В.А. СТЕКЛОВА. 2018. Т.300. С.146–157. DOI: 10.1134/S0371968518010119 РИНЦ OpenAlex
Течение Куэтта вязкоупругой среды максвелловского типа с двумя временами релаксации
ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМЕНИ В.А. СТЕКЛОВА. 2018. Т.300. С.146–157. DOI: 10.1134/S0371968518010119 РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000433127500011 |
Scopus: | 2-s2.0-85047568502 |
РИНЦ: | 35514390 |
OpenAlex: | W2803771018 |