Sciact
  • EN
  • RU

Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution Научная публикация

Конференция 22nd International Conference
04-07 июл. 2022 , Malaga
Сборник COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2022
Сборник, Springer Cham. 2022. 675 c. ISBN 978-3-031-10522-7. РИНЦ
Вых. Данные Год: 2022, Страницы: 184-197 Страниц : 14 DOI: 10.1007/978-3-031-10522-7_14
Ключевые слова Convergence analysis; Numerical dispersion; Smoothed particles hydrodynamics (SPH)
Авторы Stoyanovskaya Olga 1 , Lisitsa Vadim 2 , Anoshin Sergey 3 , Markelova Tamara 1
Организации
1 Boreskov Institute of Catalysis SB RAS
2 Institute of Mathematics SB RAS
3 Novosibirsk State University

Реферат: The Smoothed Particle Hydrodynamics (SPH) method is a meshless Lagrangian method widely used in continuum mechanics simulation. Despite its wide application, theoretical issues of SPH approximation, stability, and convergence are among the unsolved problems of computational mathematics. In this paper, we present the application of dispersion analysis to the SPH approximation of one-dimensional gas dynamics equations to study numerical phenomena that appeared in practice. We confirmed that SPH converges only if the number of particles per wavelength increases while smoothing length decreases. At the same time, reduction of the smoothing length when keeping the number of particles in the kernel fixed (typical convergence results for finite differences and finite elements) does not guarantee the convergence of the numerical solution to the analytical one. We indicate the particular regimes with pronounced irreducible numerical dispersion. For coarse resolution, our theoretical findings are confirmed in simulations.
Библиографическая ссылка: Stoyanovskaya O. , Lisitsa V. , Anoshin S. , Markelova T.
Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution
В сборнике COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2022. – Springer Cham., 2022. – Т.13375, Part I. – C.184-197. – ISBN 978-3-031-10522-7. DOI: 10.1007/978-3-031-10522-7_14 Scopus OpenAlex
Даты:
Опубликована online: 15 июл. 2022 г.
Идентификаторы БД:
Scopus: 2-s2.0-85135029590
OpenAlex: W4285414554
Цитирование в БД:
БД Цитирований
Scopus 4
Альметрики: