Sciact
  • EN
  • RU

Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem Научная публикация

Журнал Journal of Applied and Industrial Mathematics
ISSN: 1990-4789
Вых. Данные Год: 2021, Том: 15, Номер: 1, Страницы: 129-140 Страниц : 12 DOI: 10.1134/s1990478921010117
Ключевые слова antiplane shear; asymptotic analysis; crack; inhomogeneous elastic body; thin elastic inclusion; thin rigid inclusion
Авторы Rudoy E.M. 1,2 , Itou H. 3 , Lazarev N.P. 4
Организации
1 Lavrentyev Institute of Hydrodynamics
2 Novosibirsk State University
3 Tokyo University of Science
4 The Ammosov North-Eastern Federal University

Реферат: The equilibrium problem for an elastic body having an inhomogeneous inclusion with curvilinear boundaries is considered within the framework of antiplane shear. We assume that there is a power-law dependence of the shear modulus of the inclusion on a small parameter characterizing its width. We justify passage to the limit as the parameter vanishes and construct an asymptotic model of an elastic body containing a thin inclusion. We also show that, depending on the exponent of the parameter, there are the five types of thin inclusions: crack, rigid inclusion, ideal contact, elastic inclusion, and a crack with adhesive interaction of the faces. The strong convergence is established of the family of solutions of the original problem to the solution of the limiting one.
Библиографическая ссылка: Rudoy E.M. , Itou H. , Lazarev N.P.
Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem
Journal of Applied and Industrial Mathematics. 2021. V.15. N1. P.129-140. DOI: 10.1134/s1990478921010117 Scopus РИНЦ OpenAlex
Оригинальная: Рудой Е.М. , Itou H. , Lazarev N.P.
Асимптотическое обоснование моделей тонких включений в упругом теле в рамках антиплоского сдвига
Сибирский журнал индустриальной математики. 2021. Т.24. №1. С.103-119. DOI: 10.33048/sibjim.2021.24.108 РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85104742847
РИНЦ: 48151310
OpenAlex: W3157348201
Цитирование в БД:
БД Цитирований
Scopus 18
OpenAlex 11
РИНЦ 10
Альметрики: