Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity Full article
Journal |
Nonlinear Analysis
ISSN: 0362-546X |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2020, Volume: 195, Pages: 111724 Pages count : 1 DOI: 10.1016/j.na.2019.111724 | ||||||
Tags | Higher regularity; Singular parabolic equation; Strong solutions; Variable nonlinearity | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
We consider the homogeneous Dirichlet problem for the equation [Formula presented], d≥2, with the variable exponent [Formula presented], p±=const. We find sufficient conditions on p, ∂Ω, f and u(x,0) which provide the existence of solutions with the following global regularity properties: [Formula presented] For the solutions of the stationary counterpart of Eq. (0.1), [Formula presented] on ∂Ω,the inclusions [Formula presented] are established.
Cite:
Antontsev S.
, Shmarev S.
Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity
Nonlinear Analysis. 2020. V.195. P.111724. DOI: 10.1016/j.na.2019.111724 WOS Scopus РИНЦ OpenAlex
Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity
Nonlinear Analysis. 2020. V.195. P.111724. DOI: 10.1016/j.na.2019.111724 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000522150400018 |
Scopus: | 2-s2.0-85076782817 |
Elibrary: | 43218729 |
OpenAlex: | W2994896441 |