Sciact
  • EN
  • RU

Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity Full article

Journal Nonlinear Analysis
ISSN: 0362-546X
Output data Year: 2020, Volume: 195, Pages: 111724 Pages count : 1 DOI: 10.1016/j.na.2019.111724
Tags Higher regularity; Singular parabolic equation; Strong solutions; Variable nonlinearity
Authors Antontsev Stanislav 1,2 , Shmarev Sergey 3
Affiliations
1 CMAF-CIO, University of Lisbon
2 Novosibirsk State University and Lavrentyev Institute of Hydrodynamics of SB RAS
3 Mathematics Department, University of Oviedo

Abstract: We consider the homogeneous Dirichlet problem for the equation [Formula presented], d≥2, with the variable exponent [Formula presented], p±=const. We find sufficient conditions on p, ∂Ω, f and u(x,0) which provide the existence of solutions with the following global regularity properties: [Formula presented] For the solutions of the stationary counterpart of Eq. (0.1), [Formula presented] on ∂Ω,the inclusions [Formula presented] are established.
Cite: Antontsev S. , Shmarev S.
Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity
Nonlinear Analysis. 2020. V.195. P.111724. DOI: 10.1016/j.na.2019.111724 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000522150400018
Scopus: 2-s2.0-85076782817
Elibrary: 43218729
OpenAlex: W2994896441
Citing:
DB Citing
Scopus 9
OpenAlex 8
Web of science 8
Altmetrics: